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Abstract 

The largest likely R factor is useful for evaluating 
the significance of R factors obtained in structure 
determinat ions,  and is smaller  in fiber diffraction than 
in tradit ional crystal lography.  Very simple approxi-  
mations to functions used to calculate the largest 
likely R factor in fiber diffraction are derived. For 
example,  the largest R factor (R, ,)  for m overlapping 
terms is very well approximated  by R,,-~ 
(2 / r r )  ~/2 m i/2. These are a useful alternative to the 
exact, but quite complicated,  expressions derived pre- 
viously. More significantly, they provide insight into 
the behavior  of  R factors in fiber diffraction and may 
be useful in further analysis. 

I. Introduction 

The largest likely R factor (that for a structure uncor- 
related with the correct structure) is a useful yardstick 

0108-7673/90/010068-05503.00 

for evaluating the significance of  R factors obtained 
in structure determinations.  The largest likely R factor 
for single crystals was determined by Wilson (1950) 
and has recently been determined for fiber diffraction 
(Stubbs, 1989; Miilane, 1989a, b). R factors in fiber 
diffraction are generally smaller than in single-crystal 
analyses because the diffraction pattern is cylindri- 
cally averaged.  The R factor depends on the number  
of overlapping complex Fourier-Bessel  structure fac- 
tors at different positions in reciprocal space, and 
therefore on the diameter  and symmetry of the 
diffracting particle and the maximum resolution of  
the diffraction data. The largest likely R factor in 
fiber diffraction, while easily calculated, is a rather 
complicated expression involving special functions 
(Millane, 1989b), making its interpretation obscure. 
Approximat ions  to largest likely R factors in fiber 
diffraction are derived here by developing asymptot ic  
approximat ions  to components  of  this expression. 

© 1990 International Union of Crystallography 
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This approximation is very simple and applications 
to typical structure determinations show that it is 
quite accurate. 

Essential results for largest likely R factors in fiber 
diffraction are recalled in § 2 and asymptotic approxi- 
mations to these expressions are derived in the follow- 
ing section. In § 4, the approximations are applied to 
a number of fiber diffraction analyses and the results 
discussed. 

2. Preamble 

The diffracting particles or crystallites in a fiber speci- 
men are randomly rotated so that the diffraction pat- 
tern is cylindrically averaged. This means that R 
factors tend to be lower in fiber diffraction than in 
traditional macromolecular crystallography of single 
crystals, since each datum contains more degrees of 
freedom. 

The largest likely R factor associated with a fiber 
diffraction pattern is given by (Miilane, 1989b) 

R= Y. N.,R.,S,,, N,,,S,,, (1) 
m = l  =1 

where the sums are over the different numbers of 
overlapping complex Fourier- Bessel structure factors 
(both real and imaginary parts) G, (Klug, Crick & 
Wyckoff, 1958) that contribute to the different 
intensity measurements. N,, of the intensity measure- 
ments have m overlapping terms and M is the 
maximum value of m on the diffraction pattern. For 
a noncrystalline specimen, the intensity measure- 
ments are samples (along the layer lines) of the 
cylindrically averaged continuous transform of the 
diffracting particle. For a polycrystalline specimen, 
each measurement is a set of composite crystalline 
intensities (Bragg reflections). The R,,, are the largest 
likely R factors if every measurement contained m 
overlapping terms (Stubbs, 1989), and are given by 
(Millane, 1989a) 

R,, = 2 - 2 - " + 2 m (  2m-1)m B, /2[(m/2)+ 1/2, m/21 

(2) 

w.er  ( : ) i s   inomia, co  cient 
is the incomplete beta function. Note that there is a 
minus sign missing in equation (6) of Millane (1989b). 
The S,, are proportional to the mean values of the 
amplitudes that contain m overlapping terms and are 
given by (Millane, 1989b) 

Sm= r[(m/2)+ 1/21/F(m/2) (3) 

where F(x) is the gamma function. For a particular 
diffraction pattern, the N,, can be easily determined 
and the largest likely R factor calculated using tabu- 
lated values of R,,, and S,,, (Millane, 1989b). 

3. Asymptotic analysis 

The expression (1) for the largest likely R factor 
contains the quantities Rm and S,,, that are rather 
complicated functions of m. The object here is to 
obtain approximate expressions for Rm and Sm that 
are considerably simpler than the exact expressions 
(2) and (3), thereby providing insight into the 
behavior of R factors and easing any subsequent 
analysis. This is achieved by developing series for Rm 
and S,,, that are asymptotic in m for m ~ ~ .  

An asymptotic approximation to R,, is obtained 
by first developing asymptotic expansions for the 
binomial coefficient and the incomplete beta function 
in (2). The binomial coefficient is given by 

( 2 m - l )  = F ( 2 m ) / { m [ F ( m ) ] 2 } ' m  (4) 

Replacement of the gamma function by Stirling's 
formula and development of (4) as an asymptotic 
series gives 

(2 2 -  1)=22,,,_,Tr_~/2m_~/2[ 1 - ( 1 / 8 m ) +  O(m-2)], 

m - , ~  (5) 

where O(x) indicates terms of order x. The incom- 
plete beta function is defined by [Gradshteyn & 
Ryzhik (1980), equation (8.391)] 

I / 2  

B,/2[(m/2)+ 1/2, m/2] = ~ x"/2-'/2(1 - x )  ~/2-~ dx 
0 

(6) 

and with p = m/2 and y = 1 - 2 x  it can be written as 

I 

B~/2(p+ 1/2, p)=2 -2p*~/2 ~ (1-y)'/2(1-y2) p-~ dy. 
o (7) 

As p ~ oo, the integrand has significant value only in 
the vicinity of the origin, so that (7) can be put in 
the form 

B,/2(p + 1/2, p) = 2 -2p+'/2 i (1 - y)'/2(1 - y 2 ) - I  
0 

xexp [p In ( l - y 2 ) ]  dy, 

e ~ O , p - ~ .  (8) 

Expansion of the terms in the integrand as power 
series and with x = p,/2y the integral can be written as 

B~/2(p + 1/2, p) = 2-2p+~/2p -~/2 ~ H(x, p) 
0 

× exp ( - x  2) dx, p ~ oo, (9) 

where H(x, p) is a polynomial in x (see Appendix), 
and the domain of integration can be made infinite 
because the integrand is exponentially small for large 
x. The integral in (9) can be evaluated [Gradshteyn 
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& Ryzhik (1980), equation (3.461)], for each term of 
H(x, p), and changing from p back to m gives 

B,/2[(m/2)+ 1/2, m/2] 
= 2 - m m - l / 2 [ . n . I / 2 _ 2 - 1 / 2 m - l / 2  

+(1/8),rrl/2m-I+O(m-3/2)], mock.  (10) 

Substitution of (5) and (10) into (2) and development 
of an asymptotic series gives 

Rm=(2/77.)l/2m-l/2+O(m-3/2), m~oo, (11) 

which is the required approximation for R,,. Note 
that the m-1 term vanishes. The exact and leading- 
order asymptotic approximations to R,,, are shown 
in Fig. 1. The maximum error is 0.01 for m > 3 and 
0"03 for all m. Extending the expansion to include 
the m-3/2 term decreases its accuracy, a phenomenon 
quite common with asymptotic series, since they are 
not convergent. 

An asymptotic series for S,, is easily calculated 
using Stirling's formula in (3), giving 

S m =  2 -1 / 2 [m  1/2 - ( 1 / 4 ) m - 1 / 2  + O(m - 3 / 2 ) ] ,  

rn -> oo. (12) 

The exact and leading-order (m '/2) approximations 
to S,, are compared in Fig. 1. The maximum error 
for the leading-order approximation is 0.05 for m > 10 
and 0.14 for all m. Inclusion of the second term in 
(12) improves the accuracy (Fig. 1), the maximum 
error being 0.03 for all m. 

With the leading-order behavior for R,,, and Sm in 
(11) and (12), the leading-order approximation to 
RmS,, is 

RmSm= ~-l/2+O(m-1), m~oo, (13) 

which is also shown in Fig. 1, the maximum error 
being 0.01 for m > 5 and 0.1 for all m. Since higher- 
order approximations to R,, do not improve the 
accuracy, useful higher-order approximations to 
R,,,S,,, cannot be derived formally. However, numeri- 
cal calculations show that the approximation 

R,,,S.,= r r - ' / 2 [1 -  (1 /8 )m- ' ]  (14) 

0.8 

0.0 
1 10 2O m 

Fig. 1. C o m p a r i s o n  o f  R .... S,, /4 and  R,,,S,,, ( ) with their  
f i r s t -order  ( - - - )  and  s e c o n d - o r d e r  (. • .) a s y m p t o t i c  a p p r o x i m a -  
t ions,  as a f u n c t i o n  o f  the  n u m b e r  o f  o v e r l a p p i n g  t e rms  m. 

gives increased accuracy over (13) as shown in Fig. 
1, the maximum error being 0.03 for all m. 

Equations (12), (13) and (14) give simple, but quite 
accurate, approximations to the quantities used in (1) 
to calculate largest likely R factors. 

4. Examples and discussion 

Almost all high-resolution studies of fibrous 
macromolecules involve at least two complex Four- 
ier-Bessel terms ( m = 4 )  on the layer lines, and 
usually four to six terms (m = 8 to 12).The asymptotic 
expressions derived here should therefore be accurate 
enough to calculate accurate largest likely R factors 
in such studies. Even low-resolution (8-5 ~ )  studies 
often involve m->4 so that these approximations 
should be useful here also. To assess the utility of 
these approximations in actual applications, largest 
likely R factors for some typical structures were calcu- 
lated using the asymptotic approximations derived 
here and compared with the values calculated exactly 
(Millane, 1989b). The structures used were the poly- 
saccharide chondroitin 4-sulfate (Millane, Mitra & 
Arnott, 1983), a nucleic acid (Park, Arnott, Chan- 
drasekaran, Millane & Campagnari,  1987), the helical 
virus TMV (Namba & Stubbs, 1985) and the bac- 
teriophage Pfl (Stark, Glucksman & Makowski, 
1988). Three of these are based on continuous diffrac- 
tion and one (chondroitin 4-sulfate) on a poly- 
crystalline specimen. The number of overlapping 
terms at a particular position in reciprocal space was 
determined as described by Miilane (1989b). To 
assess the use of the simplest expressions derived 
above, the approximate R factors were caluclated 
using the leading terms only for S,, and R,,S,, in (12) 
and (13) respectively. The exact (R) and approximate 
(/~) largest likely R factors for two resolutions for 
each structure are listed in Table 1. The error in using 
the approximate expressions is less than 0.01 in all 
cases, which is ample accuracy in applications. Addi- 
tional calculations show that using the (more accur- 
ate) second-order approximations in (12) and (14) 
does not necessarily increase the accuracy of calcu- 
lated R factors. This is because the errors in the 
leading-order approximations to S,, and R,,S,, have 
the same sign and therefore tend to cancel in the 
quotient in (1), whereas the second-order terms, 
although more accurate, have opposite signs and the 
errors tend to add in (1). 

The accuracy of the expressions derived here is 
further assessed by comparing the exact and approxi- 
mate R factors for a hypothetical noncrystalline 
specimen with 101 helix symmetry, a maximum radius 
of 10~  and c repeat of 2 0 ~ ,  as a function of 
diffraction data resolution Pmax. The results of these 
calculations (Fig. 2) show that the asymptotic 
approximations predict the largest likely R factor 
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Table 1. Exact ( R ) and approximate ( R ) largest likely R factors for four structures 

Maximum Minimum Maximum 
Helix radius c repeat resolution resolution 

Molecule symmetry (/~) (A) (,~) (/~) M R /~ 

K' ('-4-S 3, 7.0 27.8 oc 4.0 4 0.519 0-507 
K + C-4-S 3 2 7-0 27-8 oc "~ 3.0 6 0.489 0-478 

DNA 10t 10.0 32-3 cc 3.0 10 0.413 0.407 
DNA 10, 10-0 32"3 oc 2"5 10 0'387 0.382 

TMV 493 90.0 69.0 10-0 5.0 10 0.373 0.367 
TMV 495 90.0 69-0 10.0 3.0 16 0-307 0-304 

Pfl 27 s 30.0 75-6 10.0 5-0 6 0.458 0.448 
Pfl 27s 30-0 75.6 10-0 3.0 10 0-381 0.375 

The K" C-4-S data are based on a polycrystalline specimen (trigonal unit cell with a = b = 13.8 A and space group P3221L and the other structures on 
noncrystalline specimens (continuous diffraction). References for these structures are listed in the text. 

with an error not exceeding 0.01, except at very low 
resolution where only a few Bessel terms are involved• 

5. Concluding remarks 

Very simple approximations to the functions used to 
calculate largest likely R factors in fiber diffraction 
have been obtained. Although these are asymptotic 
expansions valid for large numbers of overlapping 
terms, they are very accurate, even for small numbers 
of terms. Largest likely R factors for typical structures 
calculated using the (simplest) leading-order approxi- 
mations are quite accurate. The utility of these results 
is perhaps more that they provide insight into the 
behavior of fiber diffraction R factors and provide a 
simpler basis for further analysis than for actual 
calculation of R factors in particular cases, since this 
can be done accurately using tabulated values for the 
functions involved (Millane, 1989b). 

An ideal result would describe (analytically) the 
dependence of the largest likely R factor on par- 
ameters such as symmetry and resolution. Although 
the analysis presented here substantially simplifies 
this problem, it falls short of a complete solution 

0.8 

0.8- "~,~ 

R 

o.4 1 ~'~'~"-~ 
0.2 i i t 

0.1 0.2 0.3 0.4 0.5 
°max (M) 

Fig. 2. Variation of  the largest likely R factor, for a structure with 
10~ helix symmetry,  a maximum radius of  10 A and c repeat of  
20 A, with maximum resolution of  the dit~raction data Pm~- 
The solid curve is the exact R factor, and the bi'oken curve 
the R factor calculated using the leading-order  asymptot ic  
approximations.  

because of the complicated form of N,,. Work on 
this problem is continuing• 

I am grateful to the US National Science Founda- 
tion for support (DMB-8606942) and to Deb Zerth 
for word processing. 

APPENDIX 
Derivation of H(x, p) 

The derivation of H(x,p)  in (9) is outlined here. 
Referring to the integrand in (8), we use the following 
approximations: 

( l - y )  ~/2= 1- (1 /2)y- (1 /8)y2+O(y3) ,  y->O 
(A.1) 

(1 -y2 ) - '= l+y2+O(y4) ,  y-+O (A.2) 

l n (1 -y2)=-y2- (1 /2 )y4- (1 /3 )y6+O(yS) ,  y-*O. 

(A.3) 

Use of (A.3) shows that 

exp [p In ( l - y 2 ) ]  

=exp(-py2)[1-p(y4/2+ y6/3)+.. .],  y~O. 

(A.4) 

Letting x = p~/2y, referring to (8) and (9), and using 
the above results, we find that 

H(x, p) = 1 - (  1/2)p-'/2x + p- '[ (7/8)x2-(  1/2)x 4] 

+ 0(p-3/2), x ~ O, p-~ oo. (A.5) 
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On integrating the techniques of direct methods with anomalous dispersion: the one-phase structure 
seminvariants in the monoclinic and orthorhombic systems. III. Primitive non-centrosymmetric space 
groups of type IP220. Erratum. By D. VELMURUGAN and HERBERT A. HAUPTMAN, Medical Foundation of 
Buffalo, Inc., 73 High Street, Buffalo, New York 14203-1196, USA 

(Received 16 October 1989) 

Abstract 

There are two errors in the short communica t ion  by Vei- 
murugan & Haup tman  [Acta Crvsr (1989). A45, 656]. On 
line 9 in the Abstract, cb2,,,,.k, o should read cI92~,2k,~ and on 

line 3 in Summary of final results, 02h'2k'o should  read 
(~)2 h,2 k,O • 

All relevant information is given in the Abstract. 
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The International Union of Crystallography: its formation and early development. Erratum. By HARMKE 
KAMMINGA,* Department of History and Philosophy of Science, King's College London, Chelsea Campus, Manresa 
Road, London SW3 6LX, England 

(Received 14 November 1989) 

Abstract 

There is an unfor tunate  error  in the caption to the figure 
on page 585 o f t h e  article by Kamminga  [Acta Cryst. (1989). 

A45, 581-601]. The photograph was taken at the University 
of  Leeds dur ing the symposium held on 18-19 July 1946 
and not 1948 as stated in the article. 

* Present address~ Department of History and Philosophy of 
Science, University of Cambridge, Free School Lane, Cambridge 
CB2 3RH, England. All relevant informat ion is given in the Abstract. 


